Publications


  • Yau M., Karalias N., Lu E., Xu J., Jegelka S. (2024). Are Graph Neural Networks Optimal Approximation Algorithms? NeurIPS 2024 Spotlight. (arxiv)

  • Karalias N., Robinson J., Loukas A., Jegelka S. (2022). Neural Set Function Extensions: Learning with Discrete Functions in High Dimensions. NeurIPS 2022. (arxiv, proceedings, blogpost, video presentation)

  • Karalias N., & Loukas A. (2020). Erdos Goes Neural: an Unsupervised Learning Framework for Combinatorial Optimization on Graphs. NeurIPS 2020 Oral (arxiv, code, blogpost, short presentation, podcast, bibtex)

  • Bouritsas G., Loukas A., Karalias N., Bronstein M. (2021). Partition and Code: learning how to compress graphs. Advances in Neural Information Processing Systems, 34. (arxiv, code, slides, bibtex)